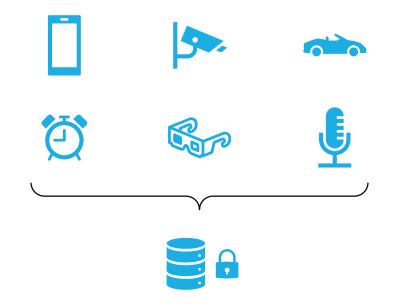
PRIVACY-PRESERVING LEARNING FEDERATED LEARNING

Alberto Archetti Politecnico di Milano 18 Feb. 2022 alberto.archetti@polito.it

DATA ISLANDS



Data is born at the edge

Pros of processing directly at the edge:

- Low latency
- Communication
- Energy efficiency
- Privacy

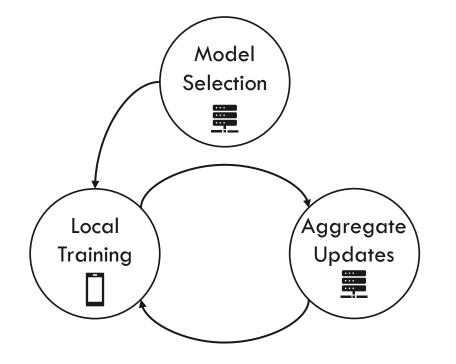
GDPR and privacy regulation laws

FEDERATED LEARNING (FL)

"Federated learning is a machine learning setting where multiple entities (clients) collaborate in solving a machine learning problem, under the coordination of a central server or service provider.

Each client's raw data is stored locally and not exchanged or transferred; instead, focused updates intended for immediate aggregation are used to achieve the learning objective."

THE GENERAL FL PIPELINE



Model Selection (server)

Define and initialize a global ML model, then send it to the clients

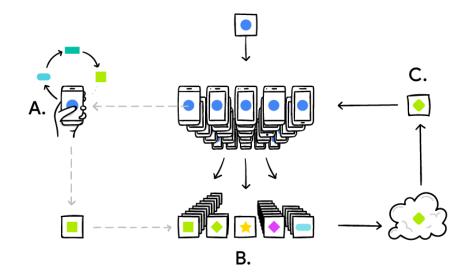
Local Training (clients)

Train the global model on private data, then send the updated model back to the server

Aggregate Updates (server)

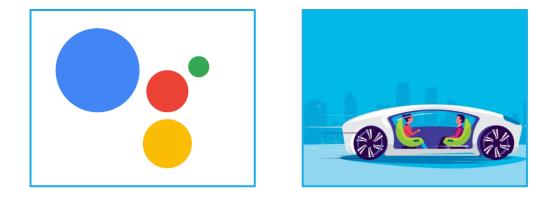
Combine the local updates into a single, new, global model, then repeat the process

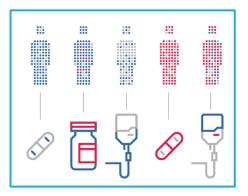
FL AND THE GOOGLE KEYBOARD



- A. Each client computes a step of stochastic gradient descent locally on private data
- B. The server collects the gradients and performs an aggregated update on the previous model
- C. The new model is broadcasted to the clients and the process repeats

EXAMPLE APPLICATIONS





Voice recognition and vocal assistants on smartphones and embedded devices

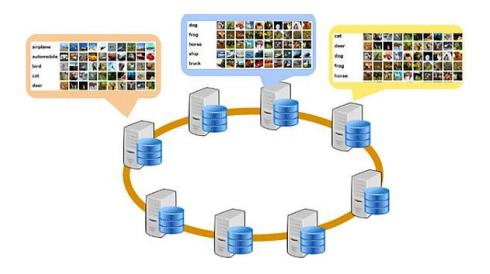
Smart adaptation to a dynamic environment in autonomous vehicles

Personalized healthcare on wearable devices

Predictive maintenance in industry

Smart cities

A NEW PARADIGM



FL is fundamentally different from distributed machine learning, where:

- Data are stored in a network of powerful cloud machines
- Data can be shuffled and balanced across clients
- Any client has access to any part of the dataset
- Computation is the bottleneck
- Typically, 1-1000 clients

OUTLINE

Federated Averaging

Types of Federated Learning

Federated Learning as Distributed ERM

Statistical and System Heterogeneity

Communication Costs

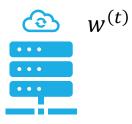
Threat Model

Privacy Preservation Techniques

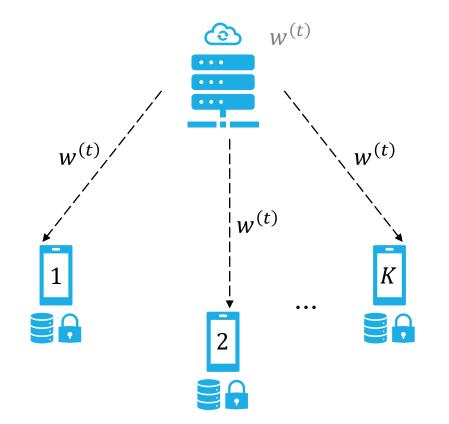
Introduction

Challenges

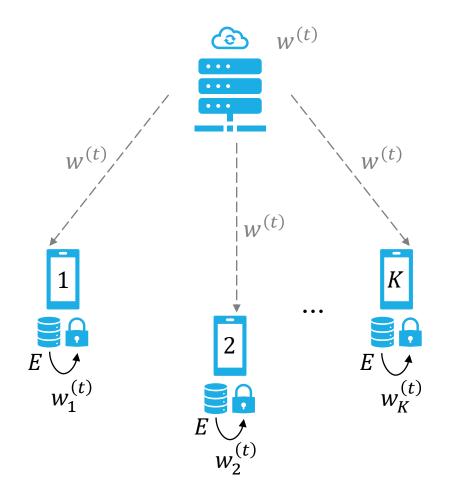
Security



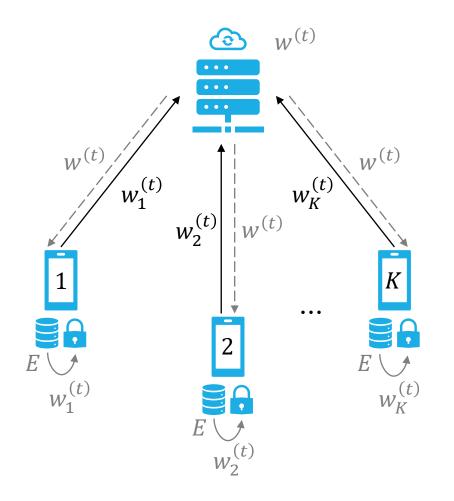
1. Select a random set of K clients



- 1. Select a random set of K clients
- 2. Broadcast $w^{(t)}$

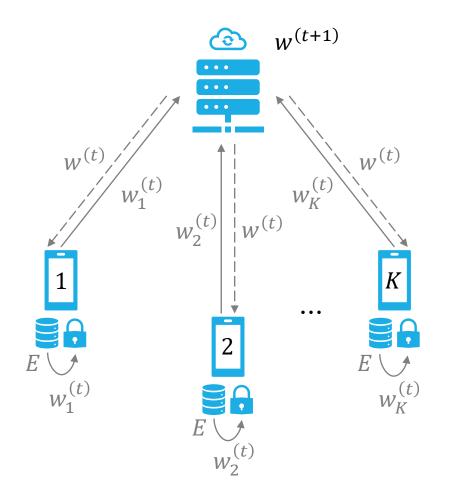


- 1. Select a random set of K clients
- 2. Broadcast $w^{(t)}$
- 3. Perform E iterations of SGD locally as $w_k^{(t)} \leftarrow w_k - \eta \nabla \mathcal{L}(w; b)$

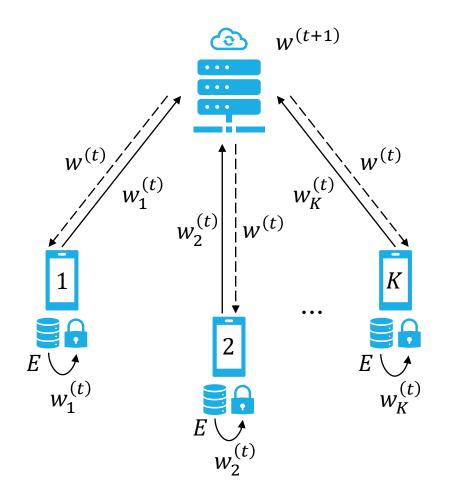


- 1. Select a random set of K clients
- 2. Broadcast $w^{(t)}$
- 3. Perform E iterations of SGD locally as $w_k^{(t)} \leftarrow w_k - \eta \nabla \mathcal{L}(w; b)$

4. Send
$$w_k^{(t)}$$
 back to the server



- 1. Select a random set of K clients
- 2. Broadcast $w^{(t)}$
- 3. Perform E iterations of SGD locally as $w_k^{(t)} \leftarrow w_k - \eta \nabla \mathcal{L}(w; b)$
- 4. Send $w_k^{(t)}$ back to the server
- 5. Aggregate updates as $w^{(t+1)} \leftarrow \sum_{k=1}^{K} \frac{n_k}{n} w_k^{(t)}$



- 1. Select a random set of K clients
- 2. Broadcast $w^{(t)}$
- 3. Perform E iterations of SGD locally as $w_k^{(t)} \leftarrow w_k - \eta \nabla \mathcal{L}(w; b)$
- 4. Send $w_k^{(t)}$ back to the server
- 5. Aggregate updates as $w^{(t+1)} \leftarrow \sum_{k=1}^{K} \frac{n_k}{n} w_k^{(t)}$
- 6. If not converged, go to 1.

OUTLINE

Federated Averaging

Types of Federated Learning

Federated Learning as Distributed ERM

Statistical and System Heterogeneity

Communication Costs

Threat Model

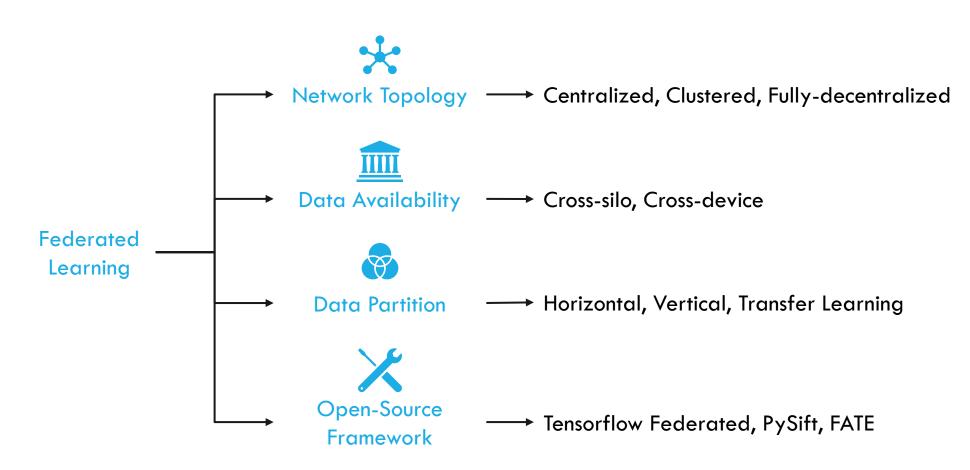
Privacy Preservation Techniques

Introduction

Challenges

Security

FEDERATED LEARNING DIMENSIONS



Centralized Federated Learning

- Trusted third party to monitor and manage the learning process
- All clients directly communicate to the central server
- Aggregation occurs on the server

Centralized Federated Learning

- Trusted third party to monitor and manage the learning process
- All clients directly communicate to the central server
- Aggregation occurs on the server

Clustered Federated Learning

- Trusted third party to monitor and manage the learning process
- Clients are clustered according to their data distribution or system constraints
- Aggregation occurs on the server, but follows the clustering prescriptions

Centralized Federated Learning

- Trusted third party to monitor and manage the learning process
- All clients directly communicate to the central server
- Aggregation occurs on the server

Clustered Federated Learning

- Trusted third party to monitor and manage the learning process
- Clients are clustered according to their data distribution or system constraints
- Aggregation occurs on the server, but follows the clustering prescriptions

Fully-decentralized Federated Learning

- Peer-to-peer topology, no trusted third party
- A trusted P2P protocol substitutes the role of the central server
- Aggregation occurs on the client
- Blochckain-based update ledger

Distributed Machine Learning

- Data stored in a network of powerful cloud machines
- Data can be shuffled and balanced across clients
- Any client has access to any part of the dataset
- Computation is the bottleneck
- Typically, 1-1000 clients

Distributed Machine Learning

- Data stored in a network of powerful cloud machines
- Data can be shuffled and balanced across clients
- Any client has access to any part of the dataset
- Computation is the bottleneck
- Typically, 1-1000 clients

Cross-Silo Federated Learning

- Data stored in edge devices with high computational power (institutions)
- Data never leave the client
- Data can be accessed only by the owner and data samples are never explicitly shared
- Computation or communication can be the bottleneck
- Typically, 2-100 clients

Distributed Machine Learning

- Data stored in a network of powerful cloud machines
- Data can be shuffled and balanced across clients
- Any client has access to any part of the dataset
- Computation is the bottleneck
- Typically, 1-1000 clients

Cross-Silo Federated Learning

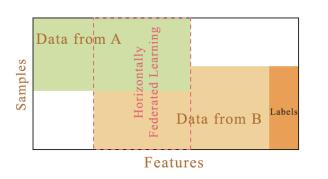
- Data stored in edge devices with high computational power (institutions)
- Data never leave the client
- Data can be accessed only by the owner and data samples are never explicitly shared
- Computation or communication can be the bottleneck
- Typically, 2-100 clients

Cross-Device Federated Learning

- Data stored in edge devices with low computational power (end-users)
- Data never leave the client
- Data can be accessed only by the owner and data samples are never explicitly shared
- Communication is the bottleneck
- Up to 10⁶ clients

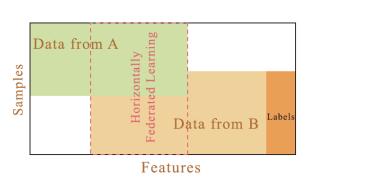
Horizontal Federated Learning

- Features overlap a lot
- Users overlap a little
- Example: same service provider in different regions



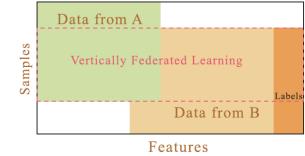
Horizontal Federated Learning

- Features overlap a lot
- Users overlap a little
- Example: same service provider in different regions



Vertical Federated Learning

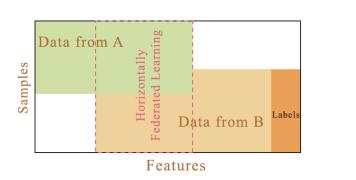
- Features overlap a little
- Users overlap a lot
- Example: two different institutions, e.g., a bank and a store in the same region



C. Zhang *et al.*, "A survey on federated learning," *Knowledge-Based Systems*, vol. 216, p. 106775, Mar. 2021

Horizontal Federated Learning

- Features overlap a lot
- Users overlap a little
- Example: same service provider in different regions

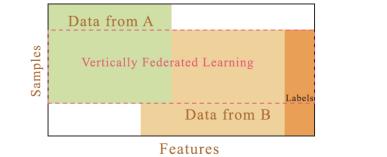


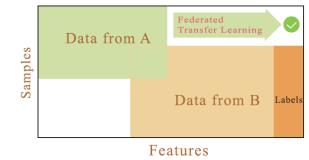
Vertical Federated Learning

- Features overlap a little
- Users overlap a lot
- Example: two different institutions, e.g., a bank and a store in the same region

Federated Transfer Learning

- Features overlap a little
- Users overlap a little
- Example: two different institutions in different regions





C. Zhang et al., "A survey on federated learning," Knowledge-Based Systems, vol. 216, p. 106775, Mar. 2021

X OPEN-SOURCE FRAMEWORKS

- Integrated with LEAF
- Has a high-level API and a Federated Core for custom algorithms
- Works with Docker and Kubernetes
- Can simulate a federated network efficiently

- Based on PyTorch
- Provides a socket interface for model exchange
- Supports asynchronous FL
- Supports encryption and differential privacy

FATE FATE

- Federated secure computing framework for distributed ML
- Supports industrial-level deployment
- Tracking FL applications with FATEBoard visualizations
- Works with Docker and Kubernetes

OUTLINE

Federated Averaging

Types of Federated Learning

Federated Learning as Distributed ERM

Statistical and System Heterogeneity

Communication Costs

Threat Model

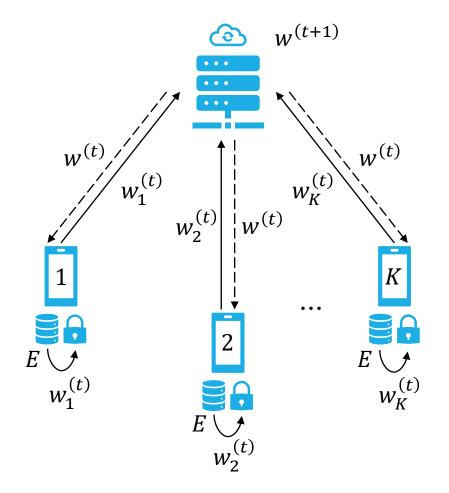
Privacy Preservation Techniques

Introduction

Challenges

Security

FEDERATED LEARNING AS DISTRIBUTED ERM



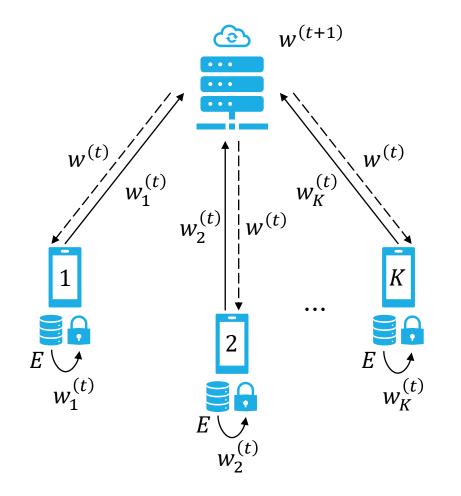
$$\min_{w} F(w) = \min_{w} \sum_{k=1}^{K} p_k F_k(w)$$

s.t. $\sum_{k=1}^{K} p_k = 1$ and $p_k \ge 0$.

Usually,
$$p_k = \frac{n_k}{\sum_{k=1}^K n_k} = \frac{n_k}{n}$$
.

T. Li *et al.*, "Federated Learning: Challenges, Methods, and Future Directions," *IEEE Signal Process. Mag.*, vol. 37, no. 3, pp. 50–60, May 2020

FEDERATED LEARNING AS DISTRIBUTED ERM



$$\min_{w} F(w) = \min_{w} \sum_{k=1}^{K} p_k F_k(w)$$

In FedAvg, F(w) is minimized with respect to the empirical distribution $U = \sum_{k=1}^{K} \frac{n_k}{n} D_k$

Does U really reflect the test distribution? What guarantees do we have?

How to deal with a huge heterogeneous network of devices?

OUTLINE

Federated	Averaging
-----------	-----------

Types of Federated Learning

Federated Learning as Distributed ERM

Statistical and System Heterogeneity

Communication Costs

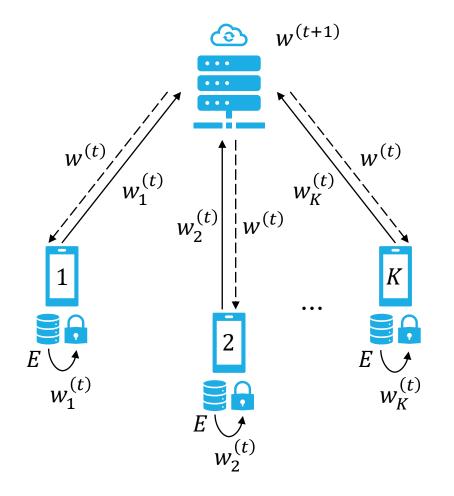
Threat Model

Privacy Preservation Techniques

Introduction

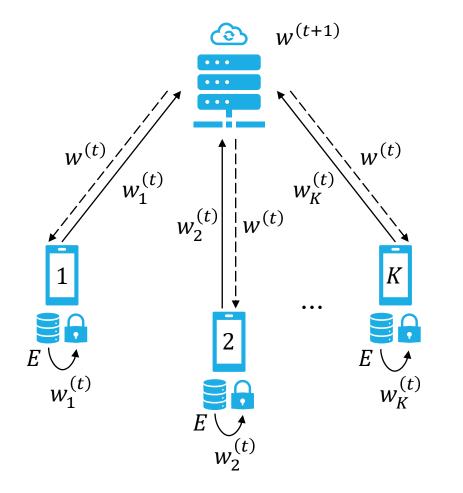
Challenges

Security



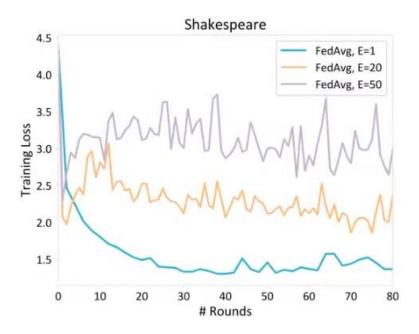
Federated Averaging

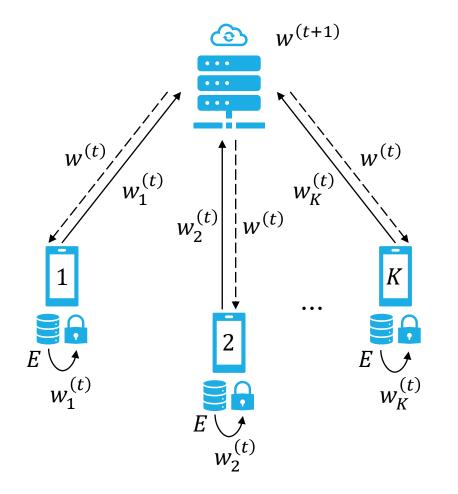
- \checkmark Simple and easy to understand
- ✓ Works well in practice
- X Can diverge in heterogeneous settings



Federated Averaging

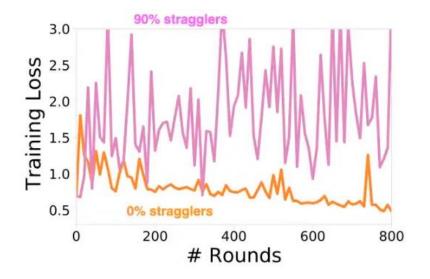
X Statistical heterogeneity

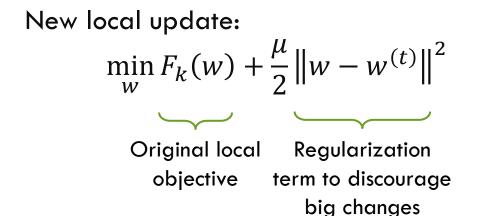




Federated Averaging

X System heterogeneity





FedProx

✓ Statistical heterogeneity: encourage well-behaved updates using a regularization term

 \checkmark System heterogeneity: allow for incomplete updates after a fixed ΔT

New local update:

 $\min_{w} F_{k}(w) + \frac{\mu}{2} \| w - w^{(t)} \|^{2}$

FedProx

✓ Statistical heterogeneity: encourage well-behaved updates using a regularization term

 \checkmark System heterogeneity: allow for incomplete updates after a fixed ΔT

 \checkmark Generalizes FedAvg ($\mu = 0$)

B-dissimilarity $\mathbb{E}_{K}[\|\nabla F_{k}(w)\|^{2}] \leq B \cdot \|\nabla F(w)\|^{2}$

Expected objective decrease

$$\mathbb{E}_{K}\left[F\left(w^{(t+1)}\right)\right] \leq F\left(w^{(t)}\right) - \rho \left\|\nabla F\left(w^{(t)}\right)\right\|^{2}$$

FedProx

- ✓ Statistical heterogeneity: encourage well-behaved updates using a regularization term
- \checkmark System heterogeneity: allow for incomplete updates after a fixed ΔT
- ✓ Generalizes FedAvg
 ✓ Theoretical convergence guarantees; asymptotically equivalent to SGD

STATISTICAL AND SYSTEM HETEROGENEITY

Data distribution simplex

 $D_{\lambda} = \sum_{k=1}^{K} \lambda_k \cdot D_k$

Agnostic ERM

$$F_{D_{\Lambda}}(w) = \max_{\lambda \in \Lambda} \sum_{k=1}^{K} \lambda_k \cdot F_k(w)$$

Agnostic FL

✓ Statistical heterogeneity: maximize with respect to any mixture of client distributions

✓ Fairness: under-represented clients have a role in the final model

 \checkmark Converge bounds for convex F

OUTLINE

Federated Averaging

Types of Federated Learning

Federated Learning as Distributed ERM

Statistical and System Heterogeneity

Communication Costs

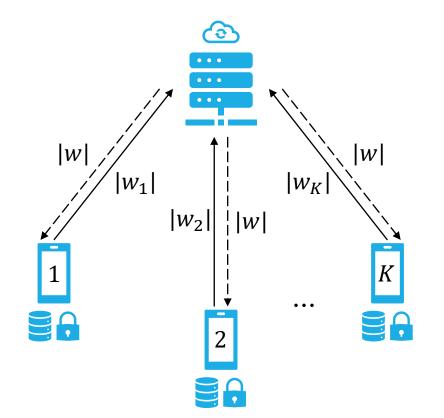
Threat Model

Privacy Preservation Techniques

Introduction

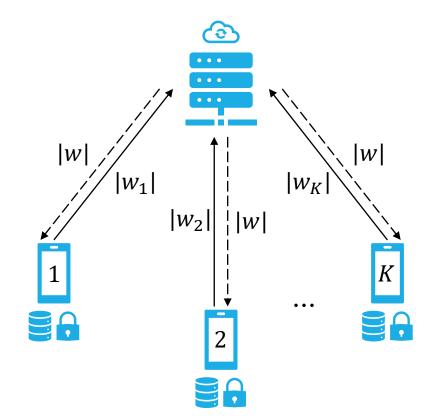
Challenges

Security



Quantization

Reduce the number of bits required for the update with discretization

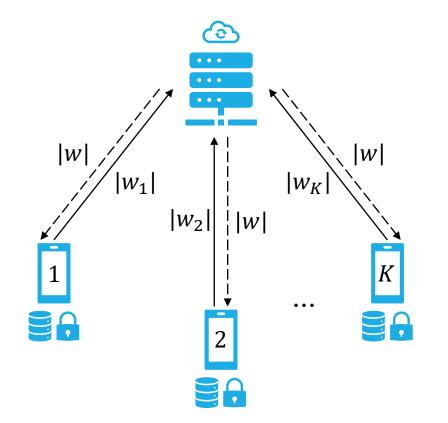


Quantization

Reduce the number of bits required for the update with discretization

Less Parameters

Select and design tiny ML models to be trained in the federation



Quantization

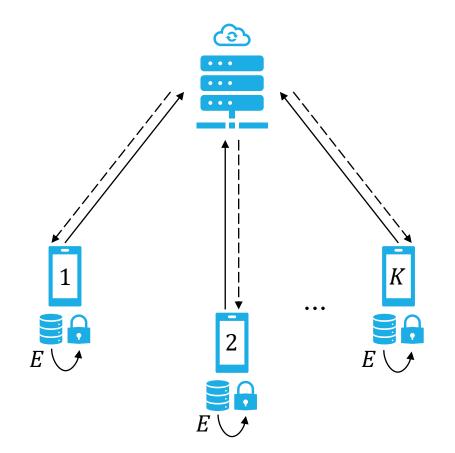
Reduce the number of bits required for the update with discretization

Less Parameters

Select and design tiny ML models to be trained in the federation

Importance-based Updating

Selectively send model weights using attentionbased importance metrics and dropout



Increase local computation

By increasing E, the learning process involves less iterations; this, however, may make convergence harder

OUTLINE

Federated	Averaging
-----------	-----------

Types of Federated Learning

Federated Learning as Distributed ERM

Statistical and System Heterogeneity

Communication Costs

Threat Model

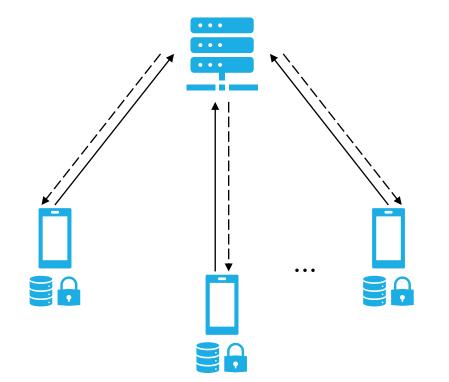
Privacy Preservation Techniques

Introduction

Challenges

Security

SECURITY PILLARS OF FEDERATED LEARNING



Confidentiality

Private user data cannot be exposed

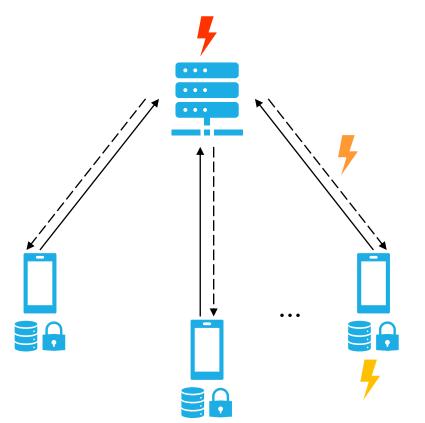
Integrity

The FL algorithm must converge to the correct model, as if all participants are collaborative

X Availability

The model must be accessible to all the clients in the federation

ATTACK SURFACES



Compromised central server

The server should be robust and secure against curious attackers

Weak aggregation algorithm

Abnormalities should be identified, and suspicious clients should be dropped

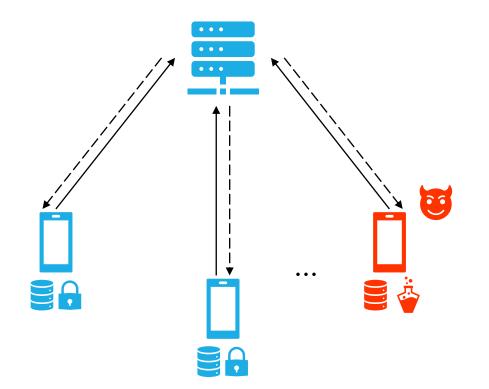
Communication protocol

The communication channel must be reliable and secure

Client data manipulation

In large federations, clients cannot be assumed to be always honest

POISONING



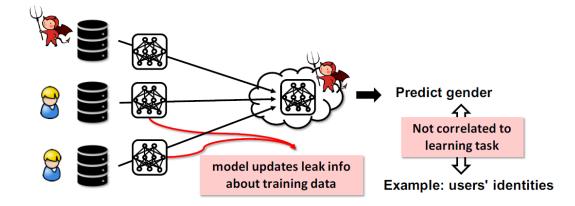
Data Poisoning

Generate dirty samples to produce falsified model parameters; a poisoned model struggles with the original task

Model Poisoning

Directly modify the model before sending it to the server; usually more effective than data poisoning, but more sophisticated

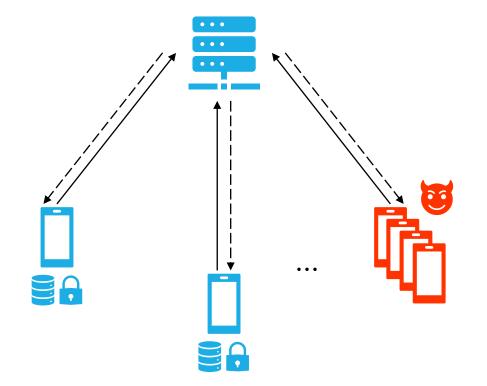
A MORE SUBTLE APPROACH



Backdoor Attack

Inject a malicious task into an existing model while retaining the overall accuracy

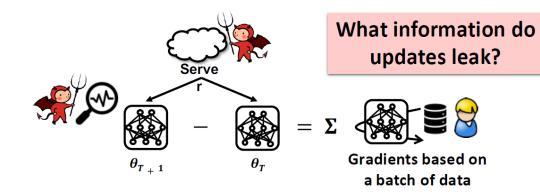
INCREASING INFLUENCE



Sibyl Attack

Poisoning attack in which a malicious agent controls a swarm of dummy clients, increasing its influence in the federation

INFERENCE



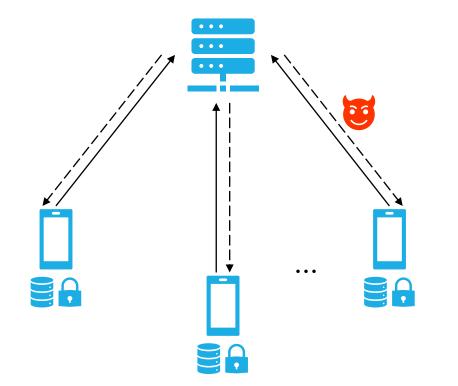
Membership Inference

Given a data point, determine if it was used to train the model

Model Inversion

Given the output of a model, try to reconstruct which input generated it

COMMUNICATION BANDWIDTH



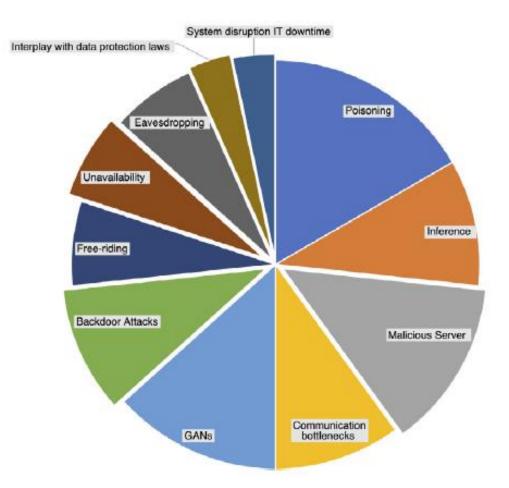
Bandwidth is the bottleneck of crossdevice FL

Most FL algorithms are synchronous; therefore, malicious stragglers can disrupt the FL environment significantly

Less common, asynchronous algorithms perform well even in low-bandwidth scenarios

50

THREAT SEVERITY IN FL



51

OUTLINE

Federated	Averaging
-----------	-----------

Types of Federated Learning

Federated Learning as Distributed ERM

Statistical and System Heterogeneity

Communication Costs

Threat Model

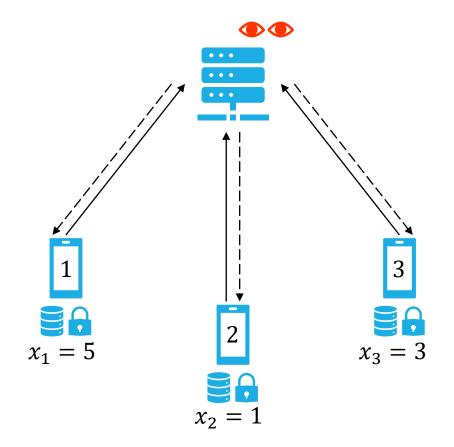
Privacy Preservation Techniques

Introduction

Challenges

Security

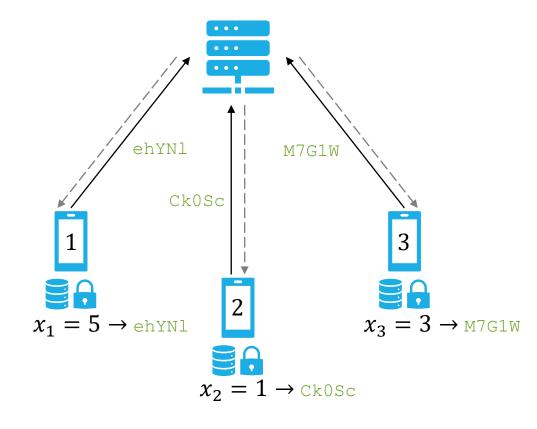
COLLABORATIVE COMPUTATION AND PRIVACY



What if the server is cooperative, but curious about our data?

Can the server compute an aggregated function, such as $y = \frac{1}{3} \sum_{i=1}^{3} x_i$, without explicitly access any private input x_i ?

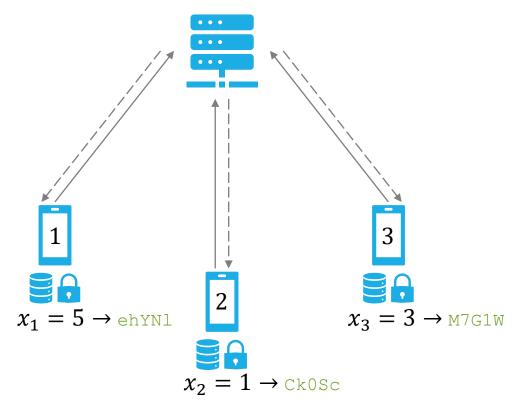
HOMOMORPHIC ENCRYPTION



 Encrypt private data and send it to the server

HOMOMORPHIC ENCRYPTION

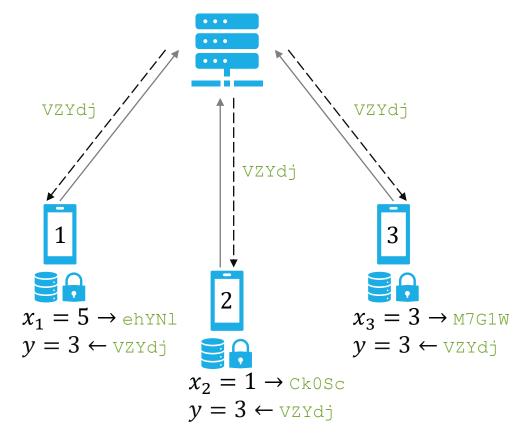
1/3 * ehYNl + CkOSc + M7G1W = VZYdj



- Encrypt private data and send it to the server
- 2. Perform computations with custom operators directly on encrypted data

HOMOMORPHIC ENCRYPTION

1/3 * ehYNl + CkOSc + M7G1W = VZYdj



- Encrypt private data and send it to the server
- 2. Perform computations with custom operators directly on encrypted data
- 3. Decrypt the message received

SECURE MULTI-PARTY COMPUTATION

Sam : €40		Bob : €50	Cassy : €60	
	Sam's data	Bob's data	Cassy's data	Secret totals
Sam's splits	44	-11	7	€40
Bob's splits				€50
Cassy's splits				€60
Shared totals				

Computes a common function on distributed data without exposing it

Example (average money):

Sam has €40 and generates three random splits: 44, -11, and 7; he keeps 44 and sends
 -11 to Bob and 7 to Cassy, while keeping 44

SECURE MULTI-PARTY COMPUTATION

Sam:	€40	Bob : €50	Cass	y : €60
	Sam's data	Bob's data	Cassy's data	Secret totals
Sam's splits	44	-11	7	€40
Bob's splits	-6	32	24	€50
Cassy's splits	20	0	40	€60
Shared totals				

Computes a common function on distributed data without exposing it

Example (average money):

Sam has €40 and generates three random splits: 44, -11, and 7; he keeps 44 and sends
 -11 to Bob and 7 to Cassy, while keeping 44

Bob and Cassy do the same

SECURE MULTI-PARTY COMPUTATION

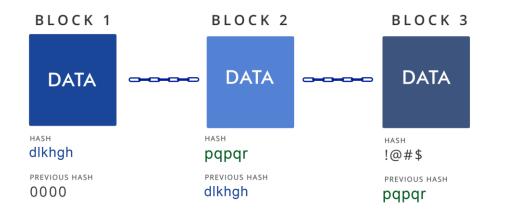
Sam:	€40	Bob : €50	Cass	y : €60
	Sam's data	Bob's data	Cassy's data	Secret totals
Sam's splits	44	-11	7	€40
Bob's splits	-6	32	24	€50
Cassy's splits	20	0	40	€60
Shared totals	€58	€21	€71	AVG €50

Computes a common function on distributed data without exposing it

Example (average money):

- Sam has €40 and generates three random splits: 44, -11, and 7; he keeps 44 and sends
 -11 to Bob and 7 to Cassy, while keeping 44
- Bob and Cassy do the same
- Everyone shares their total on shared messages and evaluates the average

BLOCKCHAIN-BASED FEDERATED LEARNING



"Blockchain is a distributed ledger empowered by devices named miners. Each miner keeps one replica of the entire ledger locally and competes to win the opportunity to generate a new block which contains a transaction."

- \checkmark No single point of failure
- ✓ Clients are authenticated
- \checkmark Incentives for participation
- X Computationally intensive
- X Not immune to poisoning/inference

ADDITIONAL RESOURCES

NeurIPS 2020 Federated Learning Tutorial https://sites.google.com/view/fl-tutorial/

Stanford MLSys Seminar (Ep. 3) https://www.youtube.com/watch?v=laCyJICLyWg

Tensorflow Federated Tutorial Session https://www.youtube.com/watch?v=JBNas6Yd30A

Federated Learning: An Online Comic from Google Al https://federated.withgoogle.com/